
J .  Fluid Mech. (1993), vol. 255, p p .  647-665 
Copyright 0 1993 Cambridge University Press 

647 

The effect of applied pressure on the shape of a 
two-dimensional liquid curtain falling under the 

influence of gravity 
By DOUGLAS S. FINNICUM, STEVEN J. WEINSTEIN 

A N D  KENNETH J. RUSCHAK 
Emulsion Coating Technologies, Eastman Kodak Company, Rochester, NY 14652-3701, USA 

(Received 19 May 1992 and in revised form 23 March 1993) 

The shape of a two-dimensional liquid curtain issuing from a slot and falling under the 
influence of gravity is predicted theoretically and verified experimentally for cases 
where a pressure is applied to the curtain. A set of approximate equations is derived 
which governs the location of the curtain for a liquid having surface tension CT, density 
p, volumetric flow per unit width Q, and local free-fall velocity V. These equations 
possess a singularity at the point where the local Weber number, We = pQV/2v, is 
equal to 1. Despite the fact that previous work on the stability of two-dimensional 
curtains shows that curtains having locations where We < 1 are unstable to small 
disturbances, our experiments show that these curtains can exist over a wide range of 
flow conditions. Thus, it is necessary to consider how the singularity is resolved when 
a pressure is applied. 

It is found that the singularity can be eliminated from the governing equations if the 
curtain assumes a definite direction as it leaves the slot. By contrast, if the curtain 
leaves the slot such that We > 1, there is no such restriction, and experimentally it is 
found that the curtain leaves parallel to the slot walls. The theoretical predictions of 
the curtain shapes are in agreement with those measured experimentally for all Weber 
numbers investigated. 

1. Introduction 
Liquid sheets are found in a wide variety of physical configurations and are thus a 

subject of industrial and academic interest. Two-dimensional liquid sheets falling 
under the influence of gravity are employed to deposit a thin, uniform film on a moving 
solid substrate during coating processes. Annular liquid sheets are used to protect the 
inner walls of laser fusion reactors and to aid in the direct reduction of certain metals. 
The spinning and extensional rheological measurement of polymer fibres can be 
achieved in configurations employing two-dimensional sheets. Water bells, the 
axisymmetric sheets of liquid formed by impingement on a solid surface, can achieve a 
wide variety of fascinating shapes with seemingly small changes in flow and ambient 
conditions. 

Much of the work examining the shapes and stability of liquid sheets has been done 
in the context of water bells. The sensitivity of the shapes of liquid sheets to ambient 
conditions was demonstrated by Hopwood (1952), who showed that a small pressure 
difference across a water bell could radically change the shape of the bell. Lance & 
Perry (1 953) further experimentally investigated the effects of pressure and theoretically 
derived the differential equations governing the shape of water bells by modifying the 
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equations of Boussinesq (1869a, b). Lance & Perry’s equations assumed that the shape 
of a water bell was described by the location of the centreline of the liquid sheet about 
which the thickness of the sheet varied slowly. Furthermore, the effects of the external 
air drag and the fluid viscosity were neglected, and plug flow was assumed locally; such 
assumptions led directly to a free-fall velocity in the liquid. Although Lance & Perry’s 
experimental and theoretical shapes were in good agreement, the comparisons were not 
absolute because they could not satisfactorily measure the small pressure difference 
across the bell. In a related problem governed by the same equations as for water bells, 
Ramos (1988) has theoretically demonstrated that a very small pressure difference 
across a liquid annular sheet can dramatically increase the length of the annular sheet 
beyond which it closes and becomes a cylindrical jet of liquid (convergence length). 

The equations of Lance & Perry (1953) are clearly not valid in the vicinity of the 
entrance region where the bell is created, since the flow is not of plug type there; the 
bell must adjust to the change in boundary conditions where it originates, and this 
effect is not accounted for by the water bell equations. An analogous entrance effect is 
seen when a two-dimensional liquid sheet issues from a slot, where its thickness 
increases or decreases because of the loss of viscous traction at the slot walls (Clarke 
1968; Tillet 1968 ; Ruschak 1980; Georgiou, Papanastasiou & Wilkes 1988). Thus, the 
appropriate value of the initial exit velocity is an issue and would seemingly limit the 
usefulness of the equations. 

Despite their limitations, the equations of Lance & Perry (1953) have been 
successfully used to predict the convergence length of annular water sheets exiting a 
vertical annular nozzle and falling under the influence of gravity (Hoffman, Takahashi 
& Monson 1980). It is important to note that the agreement between experiment and 
theory is obtained by using the average velocity at the exit of the annular nozzle 
without correcting for entrance region effects. The latter assumption is reasonable in 
the light of the work by Brown (1961), who measured the velocity in a two-dimensional 
liquid sheet issuing from a slot and falling vertically under the influence of gravity 
(hereafter called a curtain). Brown empirically obtained the following modified free-fall 
equation which includes the effect of viscosity : 

V = [V~+2g(x-O0.5(p/p)~)]~, (1) 
where V is the fluid velocity, V, is the average velocity at the slot exit, g is the 
gravitational constant, x is the vertical distance below the slot, ,u is the liquid viscosity, 
and p is the density. In (l), all units are c.g.s. Equation (1) indicates that the liquid in 
a curtain of low viscosity is essentially in free fall, as is the case for water. 

As far as the stability of liquid sheets is concerned, Taylor (1959) has shown that a 
water bell can form provided that the Weber number, defined as We = pdV2/2a, is 
greater than one everywhere in the bell, where is the surface tension, d is the local 
thickness of the liquid sheet (which is, through a mass balance, related to the 
volumetric flow rate, q, by d = q/2nrV, where r is the local radial position on the 
axisymmetric bell), and Vis given by (1) with p = 0. For the case in which gravitational 
effects are negligible, Taylor showed that the water bell collapses into a horizontal 
circular sheet with a stationary edge at the radius where We = 1, and thus a complete 
water bell is not formed. At this stationary edge, the sheet disintegrates into droplets. 
When gravity is important, Dumbleton (1969) showed theoretically that the bell 
collapses into a cone with a stationary edge at a location where We = 1 if the initial 
velocity has a component opposite to gravity. Again, the cone will disintegrate into 
droplets beyond this critical radius, although Taylor (1959) showed that where 
thickness variations in the cone are large enough (presumably to violate the 



The shape of a two-dimensional liquid curtain 649 

assumptions used to derive water bell equations) the critical Weber number for cone 
formation is smaller than 1. It should be noted that the stationary edges where 
We = 1 correspond precisely to the largest radial location where antisymmetric 
travelling waves can remain stationary with respect to the local fluid flow (Taylor 
1959). 

Despite the apparent stability implications of these water bell results, Baird & 
Davidson (1962) experimentally observed stable annular jets, subjected to an applied 
pressure, in which We < 1 locations were found. Baird & Davidson’s descriptions of 
jet shapes were only qualitative, but indicated that there was a marked change in shape 
according to whether We > 1 or We < 1 at the annular slit from which the jet issued. 
Those jets for which We > 1 at the annular slit appeared to exit the slit vertically, and 
were described as being cylindrical in shape. Those jets for which We < 1 at the 
annular slit appeared to exit the slit in a direction other than vertical, and were 
described as being rounded. It should be noted that Baird & Davidson’s explanation 
for this shape change is incorrect since they argue the curvature of the jet at the 
annular slit must change its sign as the jet makes the transition from We > 1 to 
We < 1, while the jet shapes they present show no such sign change. 

The We > 1 criterion for a stable water bell has been shown to be valid for thin two- 
dimensional liquid curtains (Brown 1961 ; Lin 1981 ; Lin & Roberts 1981) issuing from 
a slot and falling vertically under the influence of gravity. In this case, We is defined 
as for water bells with the local curtain thickness redefined as d = Q /  V,  where Q is the 
volumetric flow per width of the curtain, and V is given by (1). If We < 1 anywhere in 
the falling curtain, spatially growing antisymmetric waves can exist, while if We > 1 
everywhere in the curtain, waves formed due to disturbances decay as they are washed 
downstream. Thus, curtains are prone to disintegration at locations where We < 1, 
although both Brown (1961) and Lin (1981) reported cases where the curtain remained 
intact when We < 1 near the exit of the die slot. Lin & Roberts (1981) show that 
standing waves can be induced by placing an obstacle in the curtain. The phase lines 
for these antisymmetric waves are only slightly curved (due to the slowly varying 
thickness of the curtain) and essentially define two straight lines which intersect the 
obstacle at an angle which depends on the Weber number. Since viscosity plays a 
higher-order role in the wave speeds that are associated with the antisymmetric waves, 
these phase lines are identical to those shown by Taylor (1959) in his examination of 
waves on a horizontal inviscid liquid sheet when the effect of the slowly varying curtain 
thickness is neglected. If a standing wave can be produced in a curtain such that the 
standing wave stretches horizontally across the curtain width, then We = 1 at that 
point in the curtain, and so the curtain would be prone to disintegrate. 

Despite the fact that a very small pressure difference can radically change the shape 
of water bells and annular jets, the effect on shape of a pressure difference across a two- 
dimensional curtain has not been investigated in previous work. Such a study is the 
focus of the present paper, which is both theoretical and experimental in nature. A set 
of equations is obtained in $2 whose derivation is analogous to that of water bells 
(Lance & Perry 1953). These equations indicate the presence of a singularity when the 
local Weber number equals 1 in the curtain, and a pressure difference is applied. This 
would not be expected to be a problem, since the previously cited literature indicates 
that a curtain is unstable if We < 1 anywhere in the curtain; thus, a curtain with this 
singularity would not likely form. However, our experimental results show that for a 
wide range of flow conditions (including those cases where there is no applied 
pressure), practically stable curtains can exist for We < 1. Thus, the derived governing 
equations do have a singularity which cannot be ignored. The question then arises as 
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to how the curtain can pass through the point where We = 1 when a pressure is 
applied. 

Experimental results presented in 94 indicate that if We < 1 at a position in the 
curtain and a pressure difference is applied, the curtain will adopt a shape such that the 
We = 1 singularity is removed in the governing equations. Theoretically, the singularity 
can be eliminated if the curtain assumes a certain slope at the singularity location. 
Removal of the singularity in this way dictates that the centreline of the curtain has a 
specific, non-zero slope as it leaves the die slot. This is in marked contrast to the case 
where W e  > 1 everywhere in the curtain and a pressure difference is applied. Here the 
fluid issues from the slot in a manner such that the centreline o f the  curtain has a zero 
slope as it leaves the die slot. In addition, it is found that, for W e  > 1,  it is not possible 
to determine the slope at the curtain centreline directly from our equations; thus, one 
must rely on either a local theoretical analysis in the vicinity of the slot or experimental 
results to close the problem. In this paper, the latter approach is chosen. Whether 
We > 1 or We < 1, our theoretical predictions of curtain shapes are in agreement with 
those measured experimentally. Our discussion, given in 9 5, focuses on the implications 
of these results. Particular attention is given to the question of curtain stability for 
We < 1, as well as the implications of the above results for the number of boundary 
conditions that are consistent with our governing equations. Finally, we account for 
the previously cited observations of Baird & Davidson (1962) for an annular jet, and 
support this discussion with theory presented in an appendix. 

2. Theory 
We consider a liquid curtain issuing from a slot as shown in figure 1 .  For the purpose 

of obtaining a prediction of the curtain shape, we assume that the thickness of the 
curtain, h,  varies very slowly as it falls vertically from the die slot. We neglect the role 
that viscosity plays on the dynamics of the liquid curtain, as well as the shear stress on 
the surface of the curtain by the friction of the air. The flow is thus locally of plug type 
at each streamwise location. Under these assumptions, an overall balance of forces on 
a differential element of the curtain, hds,  yields 

where p is the liquid density, V is the velocity in the streamwise direction f, Q is the 
volumetric flow rate per unit width, PI and Pz are the pressures on the sides of the 
curtain, and s is the distance measured along the curtain (figure 1). Conservation of 
mass on the differential curtain element yields 

Vh = &h, = Q, (2 b) 

where h, and V, are the thickness of the curtain and the average velocity at the die slot, 
respectively. 

Equations (2) are now simplified. Using 

df - dofi 
ds ds 
--- 

and 
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FIGURE 1. Geometry of two-dimensional curtain issuing from a slot. 

the following results from the separation of ( 2 4  into normal and tangential 
components : 

and = pgh. 3: d( PQ V )  
dx (4 b)  

In (3) and (4), z = f ( x )  is the parameterization of the curtain location, and f9 is the angle 
that the tangent to the curtain forms with the x-axis. 

The velocity of the curtain as a function of vertical distance is obtained by 
substituting (2b)  into (4b), rearranging and integrating from the slot exit: 

( 5 )  
The equation for the normal component of momentum can be further simplified by 
substituting the expression for pgh in (4b)  into (4a)  and employing the following 
relationship between the curvature, dO/ds, and f: 

v = (V;  + 2gxp. 

where 
1 

[ 1 + (df/d~)~]; ' 

- - dx 
ds 
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The simplified normal component becomes 
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df/dx .) ( p Q  V -  2.)) = (PI - P,). 
k{([l +(df/dx) 1 2  

(7) 

At this point, (7) can be integrated for any prescribed pressure distribution; 
however, for the purpose of this paper will assume that the pressure drop across the 
curtain is a constant. Using the velocity scale 

we define the following dimensionless variables : 

In (8) we have denoted the dimensionless velocity as We, which is the local Weber 
number of the curtain. Integrating (7) and employing (8), the following dimensionless 
equation is obtained: 

dfldx - ax+ c -- 
[ 1 + (dfldjs)2]i We - 1 ’ 

where We = (We: + XI+, (9 b) 
and the slot Weber number, We,, and pressure parameter, a, are defined as 

In (9a) ,  C is a constant of integration. 
It is useful to consider (9) in some detail. If inertial forces are greater than the surface 

tension forces everywhere in the curtain, then the solution of (9) is straightforward 
given a value for C. However, this is not the case when the surface tension forces are 
greater than the inertial forces at the slot exit, that is, Weo < 1. Because the fluid in the 
curtain accelerates under the influence of gravity according to (9b), there is a position 
in the curtain, denoted by js, where the local Weber number, We, is equal to one. Thus, 
a singularity arises, where the slope dfldx in (9a)  is infinite. The location of this 
singularity is determined from (9b): 

xs = 1 - We:. (10) 

The origin of this singularity can be seen more clearly in (4a) .  For the sake of 
discussion, let us assume that the right-hand side of (4a) is positive. Then, a surface- 
tension-dominated curtain, where 2a > pQ V,  would require that the curvature, dO/ds, 
be negative so that the curtain’s concavity is opposite to that shown in figure 1. 
However, an inertia-dominated curtain, where pQ I‘ > 2a, would require a positive 
curvature, and the curtain concavity is as shown in figure 1. Thus, the location of the 
singularity is that point in the curtain where the curvature requirements of surface 
tension and inertia precisely cancel. Equation ( 9 4  would seem to indicate that the 
curtain cannot support an applied pressure at the location given by (10). 
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Experiments presented in $4 show that the curtain maintains a reasonable shape and 
can pass through the singular point intact. This leads us to consider the properties of 
the singularity in more detail. To this end, we expand the numerator and denominator 
of ( 9 4  about the location of the singularity. Denoting X = X-x8 we write 

ax = a(X+x,) (1 14 
and We-  1 - :X+ O(X).  (1 1 b) 
Thus, in the vicinity of the singularity, (9a)  becomes 

By choosing 
c = -axs, 

the numerator and denominator go to zero at the same rate. With such a choice of C, 
the slope of the curtain at the location X = x8 is finite. A referee pointed out that (13) 
is consistent with the requirement that the curvature in (4a) be finite at the singularity 
location (i.e. the left-hand side of (4a) is zero), since the slope of the curtain at the 
singularity location can be determined by explicitly solving for df/dx on the right-hand 
side of (4a). 

Note that a non-zero value of C implies that the slope of the curtain at the slot exit 
(X = 0) is non-zero. This slope can be expressed in terms of the angle at which the fluid 
leaves the slot, denoted as 8, (i.e. the angle 8 shown in figure 1 at x = 0), as 

sin B0 = a( 1 + We,). (14) 
Throughout this paper for the purposes of reference, we will refer to the W e  = 1 
location in the curtain as the singular point, despite the fact that the singularity is 
removable. 

Substituting (9b) and (13) into (9a) and rearranging, we obtain the final equation 
that governs the shape of the curtain: 

with the boundary condition at the slot exit, 

fl,=, = 0. (15b) 
The system (1 5 )  was derived for situations where We, < 1 at the slot exit. If fluid issues 
from the slot such that We, > 1, then the appropriate problem to solve for the curtain 
shape is given by (9), subject to boundary condition (15b). For this case, the integration 
constant in (9a) ,  C, which determines the slope at the slot exit, cannot be determined 
with the present theory. In this paper, this constant is determined experimentally, 
although it is acknowledged that a local theoretical analysis in the vicinity of the slot 
would also allow the evaluation of C. 

3. Experimental 
Experiments were designed to measure the position of the planar curtain for various 

flow conditions and applied pressures. To this end, the liquid curtain was surrounded 
on all four sides by an airtight enclosure made of clear acrylic sheet, which minimized 
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FIGURE 2. Schematic of experimental apparatus. 

the effect of room pressure fluctuations on the curtain and enabled one side of the 
curtain to be pressurized. A schematic of the experimental set-up is shown in figure 2. 
The front wall of the enclosure was removable for easy access to the inside of the 
enclosure during curtain formation. To minimize the effects of the edges on the 
experiments, a curtain 20.3 cm wide and 30.5 cm high was used in all the experiments. 
Since the position of the curtain from vertical varied greatly throughout the 
experiments, the sides of the enclosure were used as the lateral supports for the curtain 
as it fell through the air instead of the guide wires used by Lin & Roberts (1981). 

A solution of 0.5 % Natrosol and water at 40 "C having a viscosity of 15 C.P.S. and 
a density of 1.03 g/cm3 was used in all the experiments. Enough surfactant was added 
to ensure that the dynamic surface tension in the curtain was equal to the static surface 
tension value. The solution was delivered to the die using a Zenith metering pump and 
the flow rate was monitored using a MicroMotion mass flowmeter; the surface tension 
was determined by the overflow method (Padday 1957). The solution was evenly 
distributed across the width of the curtain by the use of a die with a large internal cavity 
and a narrow exit slot. Dies having 0.025 cm and 0.05 cm exit slot heights were used 
in the experiments as a means of adjusting the ratio of the volumetric flow rate to the 
average velocity exiting the slot. 

The pressure differences used in the study were extremely small (less than 
10 dynes/cm2). Therefore, extra precautions were taken to ensure the accuracy of the 
pressure measurements. Two Airdata Electronic Micromanometers (Model ADM- 
860, accurate to & 0.25 dynes/cm2), one calibrated in the Kodak Corporate Standards 
Laboratory and the other calibrated by Shortridge Instruments using equipment 
traceable to the National Institute of Standards and Technology, were used to measure 
the pressure difference across the curtain. The two micromanometers were used 
simultaneously during the experiments as a guard against instrument failure. In 
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FIGURE 3. Standing waves created by a rod in the curtain (front view of curtain). 

addition, the front and back sections of the enclosure were periodically opened to the 
atmosphere and the sensors checked for zero reading. 

Extreme care was taken to form the curtains used in the experiments and to prevent 
them from disintegrating. The corners where the edges of the curtain met the floor of 
the enclosure were found to have a very large effect on the overall stability of the 
curtain. After much trial and error, it was found that the creation of a shallow pool of 
liquid at the bottom of the enclosure provided the greatest amount of stability to the 
curtain. In addition, the sidewalls of the enclosure were flushed with a hot water 
solution during the initial formation of the curtain as a means of increasing the 
wettability of the walls. This hot water solution was also used to prevent breakup of 
the curtain at the edges whenever the position of the curtain changed as it responded 
to increases or decreases in the applied pressure. 

To measure the shape of the curtain at each condition, we electronically recorded an 
image of the side of the curtain through the acrylic sheet sidewall using a solid-state 
CCD camera. A light was used to highlight the wetting line of the side of the curtain, 
as well as some horizontal and vertical grooves that had been cut into the side of the 
acrylic sheet wall at 2.5 cm intervals for measurements purposes. The position of the 
curtain was then obtained by viewing and enhancing the image on a SUN workstation 
and using a software digitizer to find the location of the curtain as a function of vertical 
distance from the die slot. A check on the data was then carried out by comparing the 
digitized results with the known locations of the grooves in the original images. 

The singular point in the curtain was experimentally determined by observing the 
standing waves generated by an aluminium rod of 3 mm diameter placed through the 
curtain (figure 3). As reported by Lin & Roberts (1981), an obstacle creates waves 
which intersect at a characteristic angle, y, where y is given by sin y = (We)-+. Since the 
Weber number is equal to one at the point of singularity in the curtain, an obstacle 
placed at that location will have standing waves extending horizontally across the 
curtain (i.e. y = 90" in figure 3). Thus, by carefully placing the rod into the curtain, the 
location of the singularity in the curtain can be determined by moving the rod vertically 
through the curtain until the standing waves are horizontal. We found that the best 
way to introduce the rod into the curtain was to place it in the shallow pool at the 
bottom of the curtain and slowly move the rod up the curtain till the point of 
singularity was reached. Because the waves were difficult to see near the singular point, 
the accuracy of this method is limited to approximately k 0.5 cm. In addition, when the 
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Experimental pressure (dyne/cm2) 

FIGURE 4. Comparison of fitted and measured pressure drops for the range of experimental 
We, > 1 conditions: r = 31.2 dyne/cm, 1.3 < Q < 1.75 cm2/s, h, = 0.0254, 0.0508 cm. 

singularity was located within 3 cm of the exit of the die, it was not possible to 
determine the location of the singularity with any certainty since the standing waves 
would become lost in their reflections off the sidewalls and the die slot. Nevertheless, 
the observation of standing waves was sufficient to ascertain the presence or absence 
of a singularity in the curtain for all the flow conditions studied. 

4. Results 
We begin this section with some comments about curtain stability and the observed 

standing waves induced to form in the curtain. To within the f0 .5  cm accuracy of 
locating the horizontal wave front characterizing the W e  = 1 location, the theoretical 
prediction of the singularity location, given by (lo), was always in agreement with the 
experimentally observed location. Practically stable curtains were obtained for slot 
Weber numbers ranging from 0.02 to 2.0. The stability of the curtain was observed to 
degrade as the slot Weber number decreased. At the lowest slot Weber numbers, extra 
care had to be taken during the determination of the singularity location so as not to 
create a hole or free edge that would cause the curtain to disintegrate. 

Examination of the CCD images of the side of the curtain showed that whenever 
We, > 1 the fluid excited the die parallel to the walls of the slot, that is df/dx = 0. This 
finding dictates that the constant C in (9a)  is equal to zero whenever We, > 1. 
Therefore, the shape and displacement of the curtain are determined by the We, > 1 
set of equations ((9) and (15b)). To test the validity of the model, the above set of 
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FIGURE 5. Comparison of experimental and theoretical curtain shapes for We, > 1. Theoretical 
predictions are solid curves obtained using fitted pressure drop, AP = (PI - P2), for u = 31.2 dyne/cm, 
Q = 1.75 cm2/s, and h, = 0.0254 cm. Plot symbols are experimental measurements: 0,  
AP = 0.9 dyne/cm2; m, AP = 2.8 dyne/cm2; A, AP = 7.6 dyne/cm2. 

equations was solved for the curtain's location using finite differences and compared 
to the experimental data. Since thin liquid curtains respond readily to very low levels 
of applied pressure, this comparison was made by employing a nonlinear least-squares 
algorithm to determine the pressure that gave the best fit to the experimental curtain 
location data. Then, a comparison between the experimentally measured pressure and 
the fitted pressure was made. 

For cases where We, > 1, fitted pressures are compared to the experimental values 
in figure 4, where pressures ranged from 0.9 to 9.1 dynes/cm2. The solid line in figure 
4 is the line of perfect agreement between the experimental and the fitted theoretical 
pressures. The scatter in the figure can partially be accounted for by the & 25 dyne/cm2 
measurement precision of the micromanometers. We cannot specifically account for 
the additional error contributions to the scatter in figure 4, although the assembly of 
the apparatus itself contributed, and it is also possible that air flows due to the fluid 
motion in the curtain caused the local pressure to be different from the measured 
pressure. Regardless of the additional sources of scatter, we note that the pressure error 
was non-systematic. Figure 5 shows the curtain shape measurements for three different 
applied pressures for the situation where We, > 1. Included in the figure is the 
theoretically predicted shape using the fitted pressure. The experimental data are seen 
to agree with the predicted curtain position over the entire length of the falling curtain. 
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FIGURE 6. Comparison of fitted and measured pressure drops for the range of experimental 
We,, < 1 conditions: CT = 31.2, 50 dyne/cm, 0.26 < Q ,< 1.65 cm2/s, h, = 0.0254, 0.0508 cm. 

This, coupled with the pressure data in figure 4, indicates that the theory and 
experiments agree. Note that even at the highest applied pressure the solution exits the 
slot with a zero slope. 

Curtains having We, < 1 were also studied. Using the procedure previously 
described, fitted pressure values were obtained using the finite-difference solution to 
(15a) and (15b). The fitted pressure results are compared to the experimentally 
measured values in figure 6, where pressures ranged from 0.125 to 7.1 dynes/cm2. As 
for the We, > 1 case, there is a similar non-systematic pressure error seen over the 
entire range of applied pressure. A comparison between the experimental and fitted 
curtain shapes for three applied pressures is shown in figure 7. The results of figures 6 
and 7 indicate that there is agreement between the experiment and theory. It is clear 
from figure 7 that the liquid exits the die slot with a non-zero slope. Unlike the results 
when We, > 1, the slope of the curtain at the exit increases as the applied pressure 
increases. 

The initial velocity used in the theoretical calculations was the total flow rate per unit 
width divided by the height of the die slot. However, it is known that the curtain can 
increase or decrease in thickness as it leaves the die depending upon the flow conditions 
(Clarke 1968 ; Tillet 1968; Ruschak 1980; Georgiou 1988). Therefore, a study was 
performed to determine the sensitivity of the fitted pressure to the value of the initial 
velocity. Two flow conditions corresponding to the maximum and minimum applied 
pressures used in the study were checked. It was found that, even when the initial 
velocity was allowed to vary by +25% of the nominal value, the resultant pressure 
varied by no more than 6 % from the value obtained using the nominal initial velocity. 
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FIGURE 7. Comparison of experimental and theoretical curtain shapes for We,, < 1. Theoretical 
predictions are solid curves obtained using fitted pressure drop, AP = (P l -P2) ,  for CT = 31.2 
dyne/cm, Q = 0.87 cm2/s, and h, = 0.0254. Plot symbols are experimental measurements: 0,  
AP = 0.6 dyne/cm2; H, AP = 1.8 dyne/cm2; A, AP = 3.8 dyne/cm2. 

These results support our assumption that the rearrangement of the flow in the region 
of the slot exit (due to the loss of the no-slip condition at the walls) does not have a 
large effect on the predicted slope of the curtain at the die exit. 

Thus far, we have considered curtain shapes for cases where there is a singularity in 
the curtain, or where there is no singularity in the curtain and W e  > 1 everywhere (i.e. 
the singularity lies below). For these cases, a pressure drop across the curtain will cause 
the curtain to curve in the direction of the lower pressure (see figures 8a  and Xb). A 
natural question to consider is what happens when there is no singularity in the curtain 
and W e  < I everywhere (i.e. according to (10) the singularity would lie below the 
location where the curtain impinges on the fluid reservoir shown in figure 2 if the 
curtain were fictitiously extended). Our experiments showed that the curtain radically 
changes its shape for this case. In particular, for a pressure drop across the curtain, the 
curtain curves in the direction of the higher pressure (figure 8 c). Thus, the sense of the 
curvature is as would be expected for a bubble having surface tension. 

Cases where W e  < 1 everywhere and there was no singularity in the curtain exhibited 
an extreme sensitivity to the applied pressure; very small pressure drops led to large 
differences in curtain location. Thus, pressure drop measurements were not reliable for 
this flow regime. Furthermore, we found that the impingement point in the liquid 
reservoir, as well as the angle at which the curtain left the slot, was extremely sensitive 
to the way in which the curtain pinned to the wall. It was thus not possible to compare 
accurately experiments and theory for these cases. Nevertheless, it is clear that when 
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FIGURE 8. Curtain shapes for various singularity locations, where PI > Pz. (a) Singularity lies above 
the curtain, We, > 1 ; the curtain issues parallel to the walls of the die slot. (b) Singularity lies in the 
curtain, We, < 1 ; the curtain issues at an angle 0 from the die slot. (c) Singularity lies below the 
bottom of the curtain, We, < 1. 

We < 1 everywhere and there is no singularity in the curtain, our governing equations 
(9) do predict that the sense of the curvature will be as that shown in figure 8(c). 
Furthermore, the angle or position associated with the impingement of the curtain into 
the fluid reservoir determines the constant C in (9); it thus has a large effect on the 
curtain shape. As in the case where We > 1 everywhere, the constant C is not 
determined by the present theory. 

5. Discussion 
We begin this section by examining the structure of the equations for We < 1 and 

We > 1 in the context of wave motion. The Weber number itself can be viewed as a 
ratio of the local fluid velocity, V, to that of antisymmetric waves travelling both 
upstream and downstream at velocity V,  given by (8a) (Lin & Roberts 1981). Thus, for 
We > 1, the curtain velocity locally is greater than that of waves which travel 
upstream. Consequently, the curtain itself acts to convect flow information away from 
the slot and downstream. The governing equations (9) reflect this fact by allowing the 
slope at the slot exit to be arbitrary (C is undetermined) so that boundary conditions 
can be stacked at one end of the domain (at the slot exit). Our experiments support this 
since C = 0 allows experimentally confirmed predictions of curtain shapes over a wide 
range of flow conditions where We > 1 ; thus, conditions at the downstream end of the 
curtain are not influencing its shape. 

However, for cases where there are We < 1 locations in the curtain, the wave velocity 
travelling upstream is greater than that of the local curtain velocity. Consequently, the 
downstream locations of the curtain where We < 1 can influence the upstream curtain 
shape. From this point of view, the elimination of the singularity, which determines the 
constant C in (9), can be viewed as equivalent to a downstream boundary condition. 
Such a downstream boundary condition implies that the slope of the curtain at the slot 
exit is non-zero. On the other hand, with respect to the rest of the curtain where 
We > 1, the curtain location and slope just beyond the singularity could be viewed as 
boundary conditions that only affect the curtain downstream. If the Weber number is 
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decreased further such that there is no singularity in the curtain, then information at 
the bottom of the curtain can reach the top, and visa versa. Consequently, in (9), the 
governing equations reflect this fact by allowing the slope at the slot exit, characterized 
by C, to be arbitrary. In contrast to the case where We > 1, however, where C was also 
arbitrary, the slope at the slot exit is influenced by the boundary condition at the 
bottom of the curtain; as discussed in $4, our experiments showed that the location of 
impingement into the pool of liquid at the curtain bottom was seen to affect the slope 
at the slot exit. The above-described differences in structure between We > 1 
everywhere and We < 1 everywhere are reminiscent of the difference between 
hyperbolic and elliptic linear equations, respectively, used to describe supersonic and 
subsonic flows. 

Our results indicate both the utility and limitations in applying the derived governing 
equations of $2. It is clear that, as in axisymmetric geometries (Hopwood 1952; Lance 
& Perry 1953; Ramos 1988), the experimental curtain shapes of $4 show a large 
sensitivity to the pressure drop across the curtain. Thus, careful pressure measurements 
are required to use the equations in a predictive way. On the other hand, curtain shapes 
are relatively insensitive to the rearrangement of the flow (due to the loss of the no-slip 
condition at the slot walls) in the immediate vicinity of the slot where our equations are 
not valid; consequently, it suffices to use the average velocity of the fluid at the slot exit 
in the equations, at least when low-viscosity fluids are employed. This conclusion is 
supported by equation (l), which was empirically obtained by Brown (1961) for fluid 
falling from a slot. This same equation shows that even when viscosity is important, 
the viscosity effect can be incorporated into the initial velocity at the slot exit. With this 
change, we expect our equations to be valid also at higher viscosities, since the velocity 
is still free fall with a modified initial velocity. 

We now comment on the stability of the curtains in our experiments. As discussed 
in $1, work by Brown (1961) and Lin (1981) indicate that a curtain is not stable if 
We < 1 for any location in the curtain. Both Brown (1961) and Lin & Roberts (1981) do 
report that curtains can still exist if the local Weber number is less than 1, provided that 
the location where We = 1 is in the vicinity of the slot. Lin & Roberts (1981) attribute 
this apparent stability as being due to parameter values being outside the range of 
validity of the linear stability analysis used to derive the We = 1 criteria. However, our 
experiments show that practically stable curtains can exist over a broad range of 
conditions where We < 1 locations are found in or over the entire curtain. This is 
despite the fact that curtains investigated in this work do satisfy the conditions of Lin’s 
stability analysis. We argue here that the We = 1 criterion is based on a linear theory 
which does not represent the limit of practical stability. In order for the curtain to 
disintegrate, it is necessary for the curtain to thin to molecular dimensions and a 
perforation form - a free edge leads to rapid curtain disintegration. This thinning 
phenomenon by its nature violates the conditions of a linear stability analysis of the 
undisturbed curtain flow. As the curtain thins, there may be nonlinear effects which act 
to reduce the growth rates of the disturbances and stabilize the curtain. We employed 
surfactant, which clearly has a stabilizing effect (Rosen 1989) but is not essential to 
producing a curtain with We < 1. In addition, the growth rates of the long waves, upon 
which the stability analysis conclusions are based, are very small. These long waves 
grow spatially, and not temporally (Lin 1981); thus, growing disturbances at a given 
location will not amplify in time as the curtain flow continues. As long as disturbances 
impinging on the curtain have small amplitudes, the wave growth occurring over the 
length of the curtain may not be sufficient to approach a nonlinear regime in which the 
curtain could disintegrate. 
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FIGURE 9. Qualitative annular jet shapes reported by Baird & Davidson (1962): (a) We > 1 at 
annular slit, $o = 90"; (b) We < 1 at annular slit, $, < 90". 

We close this paper by theoretically explaining the qualitative observations of Baird 
& Davidson (1962) for an annular jet issuing from a vertical annular slit, where there 
is a pressure drop across the jet. As discussed in 8 1, Baird & Davidson observed two 
classes of jet depending on the Weber number at the annular slit from which the jet 
issued. For W e  > 1 at the slit, they assumed that the jets issued the slot parallel to the 
slit walls (figure 9 a), and their experimental measurements of convergence length of the 
jet were in good agreement with the theory. For W e  < 1 at the slit, there were no 
experimental measurements or theoretical shapes provided, but some qualitative 
shapes were sketched indicating there was an angle at which the jet issues from the 
annular slit (figure 9b), despite the fact that the slit was oriented vertically. Baird & 
Davidson (1962) incorrectly explained their observations based on a differing sign of 
the radius of curvature (in the vertical plane) for the two cases, while the jet shapes they 
present have the same curvature sign. 

An explanation of the annular jet observations can be made using the mathematical 
approach described for the planar curtain. As shown in the Appendix, a singularity 
similar to the one for the planar curtain arises for the annular jet in the absence of 
gravitational effects, when fluid inertia supplied by the radial motion of the liquid 
balance the surface tension forces (compare (A 2) with (4a)). The mathematical 
elimination of the singularity leads to a specified slope at the singularity location, which 
yields a non-zero exit angle for the annular curtain when We < 1 (this angle is given 
by (A 6b)). We also note that for W e  < 1, the qualitative shape of the annular jet (in 
the vertical plane) reported by Baird & Davidson (1962) appears to be a section of a 
circular arc, which is precisely the solution obtained when the singularity is eliminated, 
as shown by (A 6a) .  The curvature for the W e  > 1 and W e  < 1 cases have the same 
sign; it is the angle at the slot that is the distinguishing feature between the two cases. 
Finally, we comment that in either the planar or annular geometries, it is the presence 
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of a pressure drop which allows the curtain to assume a non-zero slope when 
We < 1 at the location where the curtain forms, and such a slope is determined by the 
elimination of a singularity arising due to the opposing effects of inertia and surface 
tension. 

Appendix. Elimination of the singularity in the axisymmetric problem 
The purpose of this Appendix is to demonstrate how the singularity found in the 

work of Baird & Davidson (1962) can be eliminated, for the case of a jet issuing from 
an annular slit. We begin with equation (4) of their work which is obtained by a balance 
of normal forces on the axisymmetric jet (see figure lo), which is rewritten in slightly 
different form to reflect the different notation used : 

In (A l), y? is defined as the angle between the jet and the horizontal plane as shown 
in figure 10, s is the arclength measured in the flow direction, r is the distance from the 
jet to the axis of symmetry, A P  = (PI - P2), where PI and P2 are the pressures inside and 
outside the axisymmetric annular jet, respectively, and V is given by (5) of our paper. 
Note also that Q is defined here as the volumetric flow rate of the curtain, not as the 
mass flow rate as in Baird & Davidson, accounting for the explicit appearance of the 
density, p, in (A 1). 

Following Baird & Davidson, we neglect gravity in (A 1) and (5 ) ,  and rearrange, to 
yield ( 2 ~ - % ) ~  PQV, dy? = A p - 2 ~ -  sin y? 

r 

which is analogous to equation (4a) of our paper. In (A 2), the velocity at the annular 
slit, V,, is related through a mass balance to the volumetric flow rate in the curtain as 
V, = Q/(2nrdo), where do is the gap spacing of the annular slit. At this point, we depart 
from Baird & Davidson, who further simplify (A 2) by assuming that the annular jet 
is nearly vertical, and that dy?/ds < 1 / r .  Defining x = Ar) as the parameterization of 
the interface shape in the vertical plane (it is seen in what follows that this particular 
parameterization leads to governing equations which are analogous to that for planar 
curtain) and identifying 

dfldr sin$ = 
dy? - d2fj'dr2 
ds - [ 1 + (df/d~-)~]f' [ 1 + (df/dr)2]i 

equation (A 2)  can be written after rearrangement as 

We now assume that the pressure drop across the jet is constant. Making bothfand 
r dimensionless with ro, the radius of the annular slit at z = 0, and integrating (A 3) 
once, the result is 
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FIGURE 10. Geometry of an axisymmetric annular jet issuing from an annular slit. 

where the overbars denote dimensionless quantities and C is an arbitrary constant 
which determines the slope of the jet leaving the slit. In (A 4a), the pressure parameter, 
a, and the Weber number at the slit, We,, are defined as 

APr,, PQV, a=---- , We-- .  4a ' - 4nm, 

We note that We, in (A4c) is precisely that defined by Baird & Davidson. For the 
annular jet, the following boundary condition applies at the annular slit: 

f=O at ~ = 1 .  (A 4 4  
The system (A 4) is analogous to the system (9) and (14b) in our paper for the case of 
a planar curtain. 

We now consider the solution to (A 4). If fluid exits the slot such that We,, > 1, the 
experimental observations of Baird & Davidson indicate that the jet leaves the annular 
slit parallel to the slit walls, i.e. + = in at the slit in figure 10; this observation is 
consistent with the other annular jet literature cited in § 1. For such a case, the value 
of the constant C in (A 4a) is given by 

C = We,- 1 -a. 

This constant implies that the slope of the annular jet, i.e. dfldr, increases from - co 
monotonically as r increases, which is consistent with the We, > 1 shapes shown by 
Baird & Davidson (figure 9a). 

Next, suppose that the fluid issues the slit such that We, < 1. At the slit itself, 
7 = l,andthusiftheannularjetistoconverge, thedenominatorin(A 4a)mustgo through 
zero at the radius where F =  We,. Thus, we consider the elimination of the singularity 
by the choice of C, as was done for the planar curtain. By choosing 

C = -awe: 



The shape of a two-dimensional liquid curtain 665 

the singularity can be eliminated and (A 4 a) becomes 

df7dr - a(p+ We,). 
[ 1 + (dfldq2]t - 

This equation can be integrated analytically, subject to the boundary condition 
(A 44 ,  to yield 

i.e. f is  a circular arc of radius l / a .  Finally, we note that the angle, $,,, at which the 
curtain leaves the slit is given by 

(A 6b) 
Thus, it is seen that as in the planar problem, the elimination of the singularity 
has specified that the jet leave the annular slit with a direction other than vertical for 
We, < 1 (figure 9b). 

sin $,, = a(l  + We,). 
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